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Self-organized adaptation of a simple neural
circuit enables complex robot behaviour
Silke Steingrube1,2, Marc Timme1,3,4, FlorentinWörgötter1,4 and Poramate Manoonpong1,4*
Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because
many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with
the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and
are mostly restricted to few behavioural patterns. Here we introduce chaos control as a new strategy to generate complex
behaviour of an autonomous robot. In the presented system, 18 sensors drive 18 motors by means of a simple neural control
circuit, thereby generating 11 basic behavioural patterns (for example, orienting, taxis, self-protection and various gaits) and
their combinations. The control signal quickly and reversibly adapts to new situations and also enables learning and synaptic
long-term storage of behaviourally useful motor responses. Thus, such neural control provides a powerful yet simple way to
self-organize versatile behaviours in autonomous agents with many degrees of freedom.

Specific sensori-motor control and reliable movement genera-
tion constitute key prerequisites for goal-directed locomotion
and related behaviours in animals as well as in robotic systems.

Such systems need to combine information from a multitude of
sensormodalities and provide—in real-time—coordinated outputs
to many motor units1. Already in relatively simple animals, such
as a common stick insect or a cockroach, about 10–20 differ-
ent basic behavioural patterns (several different gaits, climbing,
turning, grooming, orienting, obstacle avoidance, attraction, flight,
resting and so on) arise from about ten sensor modalities (for
example, touch sensors, vision, audition, smell, temperature and
vibration sensors) controlling of the order of 100 muscles. Nature
apparently has succeeded in creating circuitries specific for such
purposes2–5 and evolution has made it possible to solve the complex
combinatorial mapping problem of coordinating a large number
of inputs and outputs.

Conventional sensor–motor control methods for technical
applications do not yet achieve this proficiency. They typically
use for each behavioural output (for example, each walking gait)
one specific circuit (control unit), the dynamics of which is
determined by several inputs. For example, one may decompose
one complex behaviour into a set of simple behaviours each
controlled by one unit (ref. 6; ‘subsumption architecture’). In this
approach of behaviour-based robotics, sensors couple to actuators
in parallel. However, conventional methods are difficult to use
in self-organizing, widely distributed multi-input multi-output
systems7,8. For many such systems, neural control seems more
appropriate owing to its intrinsically distributed architecture and its
capability to integrate new behaviours9–16.

Here, we address a complex high-dimensional coordination
problemusing one small neural circuit as a central pattern generator
(CPG). The goal is to generate different gaits in an adaptive way
and at the same time to coordinate walking with other types of
behaviour (such as orienting). To achieve this, the CPG circuit has
an intrinsically chaotic dynamics similar to that observed in certain
biological CPGs (ref. 17). By means of a newly developed control
method we solve the conjoint problem of simultaneously detecting
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and stabilizing unstable periodic orbits. The method is capable of
controlling many different periodic orbits in the same CPG, each of
which then leads to one specific activity pattern of the agent. This
happens in an autonomous and adaptive way because the states of
the sensory inputs of the agent at each moment determine which
period to control. As a consequence, the circuit can quickly adapt
to different situations. Followed by generic neural postprocessing,
this generates a wide range of specific behaviours necessary to
appropriately respond to a changing environment. Furthermore,
chaotic, uncontrolled dynamics proves behaviourally useful, for
example, for self-untrapping from a hole in the ground.

In addition to fast, reactive adaptation based on neural chaos
control (required to deal with sudden changes at sensor inputs),
the CPG circuit introduced here allows also for learning on
longer timescales by synaptic plasticity. This way the system may
also permanently accommodate re-occurring correlations between
sensor inputs and motor outputs enabling the agent to gradually
learn to improve its behaviour.

As a prototypical example we consider a multi-sensor multi-
motor control problem of an artificial hexapod to create typical
walking patterns emerging in insects18 as well as several other
behaviours. We solve two linked control problems for the artificial
hexapod AMOS-WD06 (Fig. 1a,b)19: sensor-driven gait selection20

and sensor-driven orienting behaviour19,20. For sensor-driven gait
selection, the system receives simultaneous inputs from 13 sensors
(see Fig. 1a,c): two light-dependent resistor sensors (LDR1,2),
six foot-contact sensors (FC1,...,6), one gyro sensor (GR), one
inclinometer sensor (IM), one current sensor (I), one rear infrared
sensor (IR7) and one auditory-wind detector sensor (AW). They
coact to determine the dynamics of a very small, intrinsically chaotic
two-neuron module (described below) that serves as a CPG. After
postprocessing, the CPG output (Fig. 1d,e) selectively coordinates
the action of 18 motors into a multitude of distinct behavioural
patterns. Sensor-driven orienting behaviour is controlled by means
of four extra infrared sensors (IR1,2,3,4) together with the two light-
dependent resistor sensors (LDR1,2) that generate different types
of tropism, for example, obstacle avoidance (negative tropism)
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Figure 1 | The six-legged walking machine AMOS-WD06 and the sensor-driven neural control set-up. a, AMOS-WD06 with 20 sensors (green arrows,
18 used here, infrared sensors (IR5,6) at the middle legs switched off and not used (but see ref. 19 for their functionality)). b, Examples of joints at the right
hind leg R3. Red-dashed arrows show directions of forward (+)/backward (−) and up(+)/down(−) movements (see Supplementary Information and
Supplementary Fig. S1 for more details). TC-joint refers to the thoraco-coxal joint for forward (+) and backward (−) movements. It corresponds to TR1,2,3

and TL1,2,3 in c. The CTr-joint refers to the coxa-trochanteral joint for elevation (+) and depression (−) of the leg. The hexapod possesses six such joints,
three (CR1,2,3) on its right and three (CL1,2,3) on its left, see c. The FTi-joint refers to the femur–tibia joint for extension (+) and flexion (−) of the tibia. This
corresponds to FR1,2,3 and FL1,2,3 in c. c, Scheme of the hexapod AMOS-WD06 with 20 sensors (green), all 18 leg motor-controlled joints and one
backbone joint (blue). d, Wiring diagram of the neural control circuit (CPG) consisting of only two neurons with states xi, i∈ {1,2} (see equation (1)) and
three recurrent synapses of strengths w11, w12 and w21. The ci are self-adapting control signals and µ is the control strength (see equations (2)– (4) and
text for details). e, The set-up of sensor-driven neural control for stimulus-induced behaviour of AMOS-WD06 (see text for functional description and
Supplementary Information and Supplementary Fig. S2 for more details).

and phototaxis (positive tropism) through two extra standard
(non-adaptive) neural subnetworks: one phase-switching network
(PSN) and two identical modules of a velocity regulating network
(VRNs) (see ref. 19 and Supplementary Information for more
details). In addition, one upside-down detector sensor (UD) serves
to activate a self-protective reflex behaviour when the machine is
turned into an upside-down position. In the following, we describe
the sensor-driven gait control technique that is based on chaos
control. The Supplementary Information describes the technique of
controlling sensor-driven orienting behaviour.

To solve the combinatorially hard mapping problem of
generating a variety of gait patterns from several simultaneous
inputs, we use a simple module of two neurons i ∈ {1,2} (Fig. 1d)
as a CPG. The discrete time dynamics of the activity (output) states
xi(t )∈ [0,1] of the circuit satisfies

xi(t+1)= σ

(
θi+

2∑
j=1

wijxj(t )+ c
(p)
i (t )

)
for i∈ {1,2} (1)

where σ (x) = (1+ exp(−x))−1 is a sigmoid activation function
with biases θi and wij is the synaptic weight from neuron j to i.
The control signals c (p)i (t ) act as extra biases that depend only on
a single parameter p (the period of the output to be controlled)
and are uniquely determined by the sensory inputs (see Table 1).
We use synaptic weight and bias parameters (see the Methods
section) such that the circuit (equation (1)) shows chaotic dynamics
if uncontrolled (c (p)i (t )≡ 0), see Fig. 2a.

In contrast to previous general methods of controlling chaos21,22,
the method developed and used here both detects and stabilizes

Table 1 | List of different behaviours achieved given
environmental stimuli and conditions.

Environmental stimuli
and conditions

Period (p) Behavioural pattern

Level floor 5 Tetrapod gait
Upward slope 8 Fast wave gait
Rough terrain (hole areas) 8 Fast wave gait
Losing ground contact Chaos Self-untrapping
Downward slope 6 Transition or mixture gait
Light stimuli 4 Tripod gait and

orienting towards stimuli
Strong light stimuli 1 Resting
Obstacles 4, 5, 6, 8, or 9 Orienting away

from stimuli
Turned upside-down 4, 5, 6, 8, or 9 Standing upside-down
Attack of a predator 4 Tripod gait (escape

behaviour)
Default 9 Slow wave gait

‘Default’ means without specific input signals. Note that the mapping between a gait and a period
is simply designed by using the fastest useful period, which is p=4 (p= 2 is too fast, p= 3 does
not exist) for the fastest gait and so on, where then p= 9 is the slowest gait. Period p= 7 is in
shape very similar to p=6 and, therefore, it is not used.

periodic orbits at the same time and is implemented in a neural
way. The signal c (p)i (t ) is self-adapting and controls the dynamics
of the xi(t ) to periodic orbits of period p that are originally unstable
and embedded in the chaotic attractor, see refs 21, 23–26. The fact
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Figure 2 | Control of unstable periodic orbits in the chaotic CPGmodule. a, CPG dynamics without control (chaotic) and with control to specific periodic
orbits p∈ {1,4,5,8,9}. Activity xi(t) of neurons i= 1 (red) and i= 2 (green) are shown for some time window t∈ [600,630] along with the average activity
xav= (x1(t)+x2(t))/2 (blue). b, Switching between different periodic orbits (period indicated) and chaos (c) (adaption rate λ=0.05). The upper graph
shows the average network output xav (thin dots, left axis) and control strength µ (thick dots, right axis) for different target periods p. The lower graph
shows the time intervals of the control state (on/off). The target period is changed every 2,500 time steps (according to the top legend of b), while at the
same time the control strength µ is reset to−1. For the first five target periods, control is intermediately switched off for some time intervals such that the
system shows chaotic dynamics. For the final seven periods, control remains active such that direct switching between periodic orbits occurs with chaotic
dynamics only transiently. With increasing target periods, the control strength tends to adapt to decreasing values µ. c, Fraction of correctly controlled
periods as a function of adaptation rate and period, colour-coded from black (100% correct) to white (0% correct). Every period is investigated for
adaption rates in the range−logλ∈ {1.2,1.5,...,6.3} for 121 different random initial conditions. An unstable periodic orbit of period three apparently does
not exist in the uncontrolled dynamics.

that there is only one CPGmakes the control approach conceptually
simple, easy to implement and, as shown below, enables the system
to self-adapt to new combinations of sensory signals. Note, the
combination of these traits and their biological interpretation could
not be so easily achieved with any other pattern-generation method
(such as, for example, a random-number generator). For a given
period p, the control signal

c (p)i (t )=µ(p)(t )
2∑

j=1

wij∆j(t ) (2)

depends on the differences

∆j(t )= xj(t )−xj(t−p) (3)

of states separated by one period p and is applied every p+1 time
steps (∆j(t )= 0 and thus c (p)i (t )= 0 at all other times) such that
each point of a periodic orbit is controlled sequentially. The control

strength µ(p) adapts according to

µ(p)(t+1)=µ(p)(t )+λ
∆2

1(t )+∆2
2(t )

p
(4)

with adaption rate λ. The control strength is initialized to
µ(tinitial)=−1 whenever p changes. Here the scaling of the learning
increment is heuristically chosen as 1/p because a useful learning
rate is found to decrease with increasing period p.

Figure 2a illustrates that the method successfully generates
distinct periodic orbits of different periods, which in turn serve as
CPG output patterns. Without control, the CPG signal is chaotic.
When being controlled, the CPG dynamics reliably switches to one
out of a large variety of periodic outputs (Fig. 2b) and control is
successful over a wide range of adaption rates (Fig. 2c). As the
chaotic attractors in various dynamical systems contain a large
(often infinite) number of unstable periodic orbits21,23–25, it is
in general possible to stabilize many different periodic orbits in
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Figure 3 | Chaos-controlled CPG generates sensor-induced behavioural patterns of the hexapod AMOS-WD06. a, Examples of five different gaits (see
also Supplementary Fig. S4 and Video S1) observed from the motor signals of the CTr-joints (see Fig. 1b) and walking speeds for these gaits. Throughout
the figure, blue areas indicate ground contact or stance phase and white areas refer to no ground contact during swing phase or stepping into a hole during
stance phase. b, Walking parcour of the hexapod including barriers, obstacle objects, slopes, rough terrain, holes in the ground and light source as
phototropic signal (Supplementary Video S2). Behavioural patterns and associated periods of the CPG are indicated. c, Gait patterns (expressed as
CTr-joint motor signals) observed during walking the entire parcour (Supplementary Video S2). d, Foot contact sensor signals at time window 63–112 s,
indicating self-untrapping (foothold searching) of right frontal leg (R1) as well as chaotic motion of other legs. e, Without chaos, untrapping is not
successful, because a periodic gait does not lift the leg out of the hole (compare Supplementary Fig. S6 and Video S4).

essentially any given chaotically oscillating module that may then
serve as a CPG. In particular, the functionality is insensitive to
variations in the precise module dynamics and a specific type of
CPG or amultiple-unit CPG is not required.

Combining the adaptive neural chaos control circuit presented
above with standard PSN and VRNs postprocessing (see also
Fig. 1e) now enables sensor-driven control of a large repertoire
of behaviours. The extracted periodic orbits generate the differ-
ent gaits (Fig. 3 and Supplementary Video S1), chaotic dynamics

actively supports untrapping (see Fig. 3d versus e), and orienting
behaviour arises simultaneously, controlled by additional sensory
inputs. These features enable the robot to match environmental
with behavioural complexity (Supplementary Video S2); in par-
ticular, they create specific targeted behaviours such as phototaxis
(positive tropism) and obstacle avoidance (negative tropism) (Sup-
plementary Video S3).

Figure 3a–c exemplifies a sequence of eight different behaviours
(Supplementary Video S2): standard walking in a tetrapod gait,
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up-slope walking in a wave gait, rough-terrain walking in a wave
gait, self-untrapping through chaotic motion (Supplementary
Fig. S6 and Video S4), down-slope walking in a mixture gait
(between wave and tetrapod gait), active phototaxis by fast walking
in a tripod gait and resting. As soon as obstacles are detected, the
machine moreover performs obstacle avoidance by turning appro-
priately (Supplementary Fig. S5). Here the irregular chaotic ‘ground
state’ of neural activity (compare with refs 27–31) serves as an in-
termediate transient state that allows for fast behavioural switching.
As soon as the robot gets trapped it actually operates chaotically and
exploits chaos for efficient untrapping (Fig. 3d). This demonstrates
the capability of the robot to quickly alter its behaviour in response
to changing stimulus features from the environment.

The sensor–motor mapping so far was pre-assigned but can also
easily be learned (Fig. 4a). All artificial CPGs built so far, including
ours, directly map periodic gait patterns (p) to motor patterns
m. The most difficult open problem here, thus, is to assure that
periods p are selected appropriately given different sensory input
conditions s, and hence to learn a suitable mapping s→ p (Fig. 4a).
As the chaos-control strategy uses only one single CPG, the learning
problem becomes simple and is solved using only one more single
neuron that has plastic synapses. Plasticity is based on standard
error minimization learning, which we will describe in general
terms next (for details, see theMethods section).

The state variable v of the learning neuron linearly sums many
sensor inputs sk to v =

∑
kωk sk , where ωk are the synaptic weights

to be learned. We randomly assign periods to neuron states in
an arbitrary (but fixed) way v → p (Fig. 4a) such that different
output levels of v result in different gaits. We will now discuss
an example where we use a steep and slippery slope on which
the agent walks upwards. Of all the agent’s sensors, only the
inclinometer ss (slope sensor) will be reliably triggered on the slope.
Assuming that its weight changes according to dωs/dt ∼ ss, the
weight would grow gradually whenever a slope is sensed (ss > 0),
leading to increasing v as long as the agent stays on the slope.
As the map v→ p is fixed, the agent checks different values of p
one by one trying out different gaits. As a biologically motivated
constraint, we now impose in addition that the robot should
choose to climb using an energy-saving gait32. We hereby define
a mechanism that stops learning at that level of v , where such a
gait is selected. This is achieved by minimizing an error term e
that compares actual energy uptake with the (low) energy uptake
of the default gait on flat terrain. If, while climbing, the agent
chooses an energy-saving gait, this error will drop to zero. We
thus modify our learning rule to rely on the product of error
and sensor signal, dωs/dt ∼ ss · e, such that learning stops as
soon as the error is essentially zero. This happens when ωs (and,
thus, v) have grown to exactly the point where p for the lowest
energy gait is selected.

Figure 4b illustrates the dynamics of this learning experiment.
Here, the weight ωs of the slope sensor ss grows, whereas any
uncorrelated synapse, for example ωg from the gyro sensor sg,
remains unaffected (Fig. 4b). This demonstrates that only the
relevant synapses learn. The output v of the learning neuron
(Fig. 4a) follows these changes and determines, by means of a
threshold mechanism, different values of p (Fig. 4b). As soon as
p selects the energy-saving slow wave gait (here p= 9), the error
e drops to zero, stabilizing synapses and thereby fixing that gait.
As the synaptic values remain stored, the next time the hexapod
encounters this slope, the inclination sensor will immediately be
triggered leading to the same output v and, hence, again to the
selection of the slowwave gait (Fig. 4b, right: experiment 2).

In our single-CPG system learning is simplified by the fact that it
has to learn only the single map s→p. Thus, the same neuron v can
also be used to learn other sensor–motormappings. For instance, in
a second example of learning (Supplementary Fig. S7 and Video S6)

m

ω

ωs

ωg

v

e

Ia

s sg

ss

Experiment 1 Experiment 2

30 s

v
Σ

sn

sg

s1

ss

Id

Id

Ia

+¬

e

〈  〉
Θ

Environment

ω

.Δ ω ~seSe
ns

or
s

8

4 4

6
5
9 9

1

p

AMOS-WD6

v ↔ p → m

a

b

Figure 4 | Learning sensor–motor mappings. a, Wiring diagram for
learning. The learning circuit is shown in red. A learning (summation)
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∑
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triangles depict synapses. From output v a gait m is selected using the CPG
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the stored default current Id (red line, for tripod gait on flat terrain) creating
an error signal e, which is used for driving synaptic weight changes1ω. The
symbol 〈 〉Θ denotes a thresholded averaging process (see the Methods
section). b, Signals during two sequential experiments (see also
Supplementary Video S5). Colour code: yellow, flat terrain; red, slope
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sensor signal; sg is the gyro sensor signal. In the first experiment the robot
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we demonstrate how the robot learns to escape from danger by
choosing a particularly fast gait.

Thus, single-CPG control based on stabilizing unstable periodic
orbits enables self-adaptation of the required sensor–motor
mapping s↔m. This furthermore underlines a central advantage
of the single-CPG approach where pattern generation is robust
and learning becomes simple such that extra sensor–motor
conjunctions can also be implemented.

We have thus synthesized an integrated system, in which
a small, intrinsically chaotic CPG module brings together fast
adaptivity in response to changing sensor inputs with long-
term synaptic plasticity. Both mechanisms operate on the same
network components. The key ingredient here is the time-delayed
feedback chaos control that simultaneously detects and stabilizes
the dynamics of originally unstable periodic orbits in a biologically
inspired, neural way. It is capable of controlling a large number of
different periodic orbits of higher periods, a feature not normally
achieved in a robust way by standard time-delayed feedback
methods23. This finally permits implementing learning in an
efficient way, namely as amode selection process at the CPG.

As a consequence, the new strategy enables flexibly configurable
control that is readily implemented in hardware, see ref. 19. As
it is based on controlling unstable periodic orbits in a generic
chaotic system, it does not sensitively depend on the details of
the dynamics. For instance, the two-neuron architecture is not
necessary and larger chaotic circuits work in a similar way. For
the same reason, our strategy may be generalized to integrate
other behavioural patterns and can also be applied for controlling
different types of kinematic (position controlled) walking machine
and behaviour. Transfer to dynamic walking33 might be possible,
too, but would require adding control of extra state variables
(for example, forces).

The chosen design is inspired by neural structures found
in insects. These combine adaptive CPG function34 with
postprocessing35,36 similar to the PSN (ref. 37) and VRN (ref. 38)
used here. Such individual network components had been used
in earlier studies and successfully provided partial solutions to
artificial motor-control problems9–16 indicating that neural control
is an efficient way for solving complex sensori-motor control
problems. For example, Collins and Richmond11 have used a
network of four coupled nonlinear oscillators as hard-wired CPGs
to produce and switch between multiple quadrupedal gait patterns
by varying the network’s driving signal and by altering internal
oscillator parameters. However, embodied control techniques39
for generating a variety of gait patterns33,40 jointly with other
sensor-driven behaviours40 in a system with many degrees of
freedom are still rare13,14. Moreover, these systems either rely on
only a smaller number of sensors and motors, or, if more motors
are present9, their coordination forms low-dimensional dynamics
such as waves that constrain the motor behaviour to snake- or
salamander-like patterns with a uniform gait. Both, small numbers
of inputs and outputs and behavioural restrictions reduce the
sensor–motor coordination problem substantially.

The capabilities of biological CPGs to generate chaotic as well
as periodic behaviour led to the hypothesis that chaos could
serve as a ground state for the generation of large behavioural
repertoires by the neural activity in these systems (for a review,
see ref. 41). The present study now realizes this idea and our
chaos-based approach enables a complex combination of walking
and orienting behaviour. It simultaneously supports autonomous,
self-organized and re-configurable control by adaptively selecting
unstable periodic orbits from the chaotic CPG module. Such CPGs
might moreover be used for mutual entrainment between neural
andmechanical components of a behaving system42,43. Adding such
features, however, would require further investigations that are
more system specific.

Taken together, this work suggests how a chaotic ground
state of a simple neuron module may be used in a versatile
way for controlling complex robots. It further demonstrates that
chaos may also have an active, constructive role for guiding the
behaviour of autonomous artificial as well as biological systems.
The present study still focuses on reactive motor behaviour. As
periodic orbits may be controlled also over longer periods of time,
these systems also offer the future possibility of implementing
short-term motor memory. Decoupling the centralized control
of the CPG from direct sensor inputs would make it more
persistent. This opens up the opportunity of implementing
behavioural components that make the robotic system capable of
navigating and moving with a certain degree of memory-based
planning and foresight44,45.

Methods
Neural control. Sensor-driven neural control for stimulus-induced walking
behaviours consists of four neural modules: neural preprocessing, adaptive neural
chaos control (CPG), neural CPG postprocessing and neural motor control
(Fig. 1e). The controller acts as an artificial perception–action system through a
sensori-motor loop. All raw sensory signals go to the neural preprocessing module.
It consists of several independent components that eliminate the sensory noise and
shape the sensory data (see Supplementary Information for more details). The
preprocessed light-dependent resistor (LDR1,2), foot contact (FC1,...,6), gyro (GR),
inclinometer (IM) and rear infrared (IR7) sensor signals (Fig. 1) are transmitted
to the adaptive neural chaos control module. Simultaneously, other preprocessed
infrared (IR1,2,3,4), upside-down detector (UD) as well as the LDR1,2 sensor signals
(Fig. 1) are fed to the neural motor control module.

In the adaptive neural chaos control module, a target period for the chaos
control is selected according to the incoming sensor signals (see Supplementary
Information). This module acts as a CPG where its outputs for different periods
determine the resulting gait patterns of the machine (according to Table 1). Here
we set the bias values of the CPG circuit as θ1 =−3.4, θ2 = 3.8 and the three
operating synapses as w11 =−22.0, w12 = 5.9, w21 =−6.6 (w22 = 0.0), such that
it shows chaotic dynamics if uncontrolled (c (p)i (t )≡ 0), see Fig. 2a. The control
strategy is robust against changes of these parameters because it simply relies on the
CPG showing chaotic dynamics. It is important to note that chaos on the one hand
serves as a ground state of the CPGmodule; on the other hand it is also functionally
used for self-untrapping.

The CPG outputs are passed through the neural CPG postprocessing module
for shaping the signal that enters the neural motor control module. The CPG
postprocessing module is composed of two single recurrent hysteresis neurons
(more details in Supplementary Information) that smooth the signals and two
integrator units that transform the discrete smoothed signals to continuous
ascending and descending motor signals. Finally, two fixed, non-adaptive
subnetworks, PSN and VRNs, of the neural motor control module (Supplementary
Fig. S6) regulate and change the CPG signals to expand walking capability allowing
turning as well as sidewards and backwards walking. In earlier studies we have
shown that the used networks are robust within a wide range of parameters19. In
fact, it is even possible to use identical VRNs (without change in structure or in
parameters) in quadruped robots46 and transfer the PSN as well as the VRNs to
eight-legged machines19.

Learning. Beyond sensor-driven neural control, we use a modified Widrow–Hoff
rule47 as a learning mechanism to minimize energy consumption as a learning goal
(see Supplementary Information for other learning goals). We define the output of
the learning neuron as v =

∑
kωk sk and the rule as dωi/dt = α · e · si, where α� 1

is the learning rate. The error e is given as e = 〈Ia− Id〉Θ , the symbol 〈 〉 denotes
averaging over 20 s and we set the error to zero if it is smaller than Θ = 0.01.
The variable Ia is the motor current used at present of all motors measured by a
sensor (Fig. 1a,c) and Id is the default current. This is the average current used in a
tripod gait on flat terrain.

Walking machine platform. The six-legged walking machine AMOS-WD06 is a
biologically inspired hardware platform. It consists of six identical legs where each
of them has three joints (three degrees of freedom). All joints are driven by standard
servomotors. The walking machine has all in all 20 sensors described in the main
section where the potentiometer sensors of the servomotors are not used for sensory
feedback to the neural controller. We use a Multi-Servo IO-Board (MBoard) to
digitize all sensory input signals and generate a pulse-width-modulated signal to
control servomotor position. For the robot walking experiments, the MBoard
is connected to a personal digital assistant on which the neural controller is
implemented. Electrical power supply is provided by batteries: one 7.4 V lithium
polymer 2,200mAh for all servomotors, two 9V NiMH 180mAh for the electronic
board (MBoard) and the wireless camera and four 1.2 V NiMH 2,200mAh for all
sensors (see Supplementary Information for more details).
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